To appropriately mitigate environmental impacts from transportation, it is necessary for decision makers to consider the life-cycle energy use and emissions. Most current decision-making relies on analysis at the tailpipe, ignoring vehicle production, infrastructure provision, and fuel production required for support. We present results of a comprehensive life-cycle energy, greenhouse gas emissions, and selected criteria air pollutant emissions inventory for automobiles, buses, trains, and airplanes in the US, including vehicles, infrastructure, fuel production, and supply chains. We find that total life-cycle energy inputs and greenhouse gas emissions contribute an additional 63% for onroad, 155% for rail, and 31% for air systems over vehicle tailpipe operation. Inventorying criteria air pollutants shows that vehicle non-operational components often dominate total emissions. Life-cycle criteria air pollutant emissions are between 1.1 and 800 times larger than vehicle operation. Ranges in passenger occupancy can easily change the relative performance of modes.
The similarity algorithm calculates how much two contents in the system are similar to one another. So far, similarity is calculated based on similarity of the project type, area of interest and user type. Generally, if two contents have more parameters in common they are more similar to each another. More information.
BASt studied the “Possibilities for use and effects of 60 t trucks on federal trunk roads" The ...
68.75
created: Matej Michelizza, 10.06.2009 21:11:00 last modified: Matej Michelizza, 04.05.2011 08:48:36
While we are still building the FEHRLopedia with the help of experts like yourself, you may find that not all subjects are covered as deeply as you need. Therefore if you don't find the results you are looking for, please try the CERTAIN custom Google search. We would be grateful if you would create new content for the FEHRLopedia from your results. Thanks for your assistance in building the system.